Jerusalem and the Dead Sea

Click on this image for a more detailed browse image.

This space radar image shows the area surrounding the Dead Sea along the West Bank between Israel and Jordan. This region is of major cultural and historical importance to millions of Muslims, Jews and Christians who consider it the Holy Land. The yellow area at the top of the image is the city of Jericho. A portion of the Dead Sea is shown as the large black area at the top right side of the image. The Jordan River is the white line at the top of the image which flows into the Dead Sea. Jerusalem, which lies in the Judaean Hill Country, is the bright, yellowish area shown along the left center of the image. Just below and to the right of Jerusalem is the town of Bethlehem. The city of Hebron is the white, yellowish area near the bottom of the image. The area around Jerusalem has a history of more than 2,000 years of settlement and scientists are hoping to use these data to unveil more about this region's past. The Jordan River Valley is part of an active fault and rift system that extends from southern Turkey and connects with the east African rift zone. This fault system has produced major earthquakes throughout history and some scientists theorize that an earthquake may have caused the fall of Jericho's walls. The Dead Sea basin is formed by active earthquake faulting and contains the lowest place on the Earth's surface at about 400 meters (1,300 feet) below sea level. It was in caves along the northern shore of the Dead Sea that the Dead Sea Scrolls were found in 1947. The blue and green areas are generally regions of undeveloped hills and the dark green areas are the smooth lowlands of the Jordan River Valley. This image is 73 kilometers by 45 kilometers (45 miles by 28 miles) and is centered at 31.7 degrees north latitude, 35.4 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and vertically received; green is L-band, horizontally transmitted and horizontally received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 3, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth. Each flight of SIR-C/X-SAR collected data at more than 400 sites around the globe. The science team is using images like this one to help answer various scientific questions about the condition of ecosystems, the extent of snow and ice packs, geologic activity such as volcanoes and earthquakes, and measurement of ocean waves and currents.

P-46500 December 21, 1995

For a full-resolution (15-megabyte) copy of this image, press here
For a browse resolution (335 K) copy of this image, press here

Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

-> Imaging radar homepage